Papers FOBI name on it


90. Biomaterials, 2019, 209, 67-78, Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization.

89. Journal of Controlled Release, 2019, 304, 164-172, Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases.

88. Cell, 2019, 176, 757-774, Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment.


86. Langmuir, 2019, 35(11), 3992-3998, Protein Nanoparticle Fabrication for Optimized Reticuloendothelial System Evasion and Tumor Accumulation.

85. Advanced Therapeutics, 2019, https://doi.org/10.1002/adtp.201800154, Olive Oil-Based Ultrafine Theranostic Photo Nanoemulsions

83. Molecules, 2019, 24(5), 885, Design of an Amphiphilic Poly (aspartamide)-Mediated Self-Assembled Nanoconstruct for Long-Term Tumor Targeting and Bioimaging.


81. Bioconjugate Chemistry, 2019, 30 (1), 90-100, Synthesis and Evaluation of Multifunctional Fluorescent Inhibitors with Synergistic Interaction of Prostate-Specific Membrane Antigen and Hypoxia for Prostate Cancer.


79. Free Radical Biology and Midicine, 2019, 134, 106-118, Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.

78. Biomacromolecules, 2019, 20 (2), 1109–1117, Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation.


75. Biomaterials, 2019, 192, 282-291, Stimulus-activatable echogenic maltodextrin nanoparticles as nanotheranostic agents for peripheral arterial disease.


70. Biomacromolecules, 2018, Mitochondria Targeting and Destabilizing Hyaluronic Acid Derivative-Based Nanoparticles for the Delivery of Lapatinib to Triple-Negative Breast Cancer.


68. ACS Applied Materials and Interfaces, 2018, Dual Imaging-Guided Oxidative–Photothermal Combination Anticancer Therapeutics.


66. International Journal of Nanomedicine, 2018, 13, 4627-4639, Cyclic rgD-
conjugated Pluronic® blending system for active, targeted drug delivery.


63. ACS Applied Materials and Interfaces, 2018, 10 (43), 36628-36640, Tumor Targeting and Lipid Rafts Disrupting Hyaluronic Acid-Cyclodextrin-Based Nanoassembled Structure for Cancer Therapy.


60. Biomaterials, 2018, 186, 22-30, Acid-triggered echogenic nanoparticles for contrast-enhanced ultrasound imaging and therapy of acute liver failure.


53. Theraonotics, 2018, 8(17): 4574–4590, Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy.


49. Biochimica et Biophysica Acta (BBA) - General Subjects, 2018, 1862(12) 2545-
2554, Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins.


45. NPG Asia Materials, 2018, 10, pages197–216, Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer.


42. Tissue Engineering and Regenerative Midicine, 2018, 12(2):516-528, Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.


38. Carbohydrate Polymers, 2018, 181, 1-9, IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy.


13. Oncotarget, 2016, 7:48250-48264, SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.


11. Contrast Media & Molecular Imaging, 2016, DOI: 10.1002/cmmi.1714, A novel Tc-99 m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine tumor model.


